A wrapper around dplyr::mutate() that creates a corrected value for each observation of the specified variable based on one data point.

dr_correctOne(.data, sourceVar, cleanVar, calVal, calStd, factorVar)

Arguments

.data

A tbl

sourceVar

Name of variable to correct

cleanVar

New variable name for corrected data

calVal

A numeric value; the value that the instrument was actually reading for the parameter

calStd

A numeric value; the value that the instrument should have been reading for that standard; i.e. the standard value

factorVar

Name of variable generated using dr_factor

Value

An object of the same class as .data with the new corrected variable added to the other data in .data.

Details

This function takes the raw data from the water-quality instrument, utilizes the values generated from dr_factor and returns data that accounts for drift over time. This is done via a one-point calibration standard, which it typical for specific conductivity, dissolved oxygen, and turbidity.

See also

dr_factor for correction factor creation, dr_correctTwo for the two-point drift correction

Examples

testData <- data.frame( Date = c("9/18/2015", "9/18/2015", "9/18/2015", "9/18/2015", "9/18/2015", "9/18/2015"), Time = c("12:10:49", "12:15:50", "12:20:51", "12:25:51", "12:30:51", "12:35:51"), Temp = c(14.76, 14.64, 14.57, 14.51, 14.50, 14.63), SpCond = c(0.754, 0.750, 0.750, 0.749, 0.749, 0.749), corrFac = c(0.0000000, 0.2003995, 0.4007989, 0.6005326, 0.8002663, 1.0000000), stringsAsFactors = FALSE ) dr_correctOne(testData, sourceVar = SpCond, cleanVar = SpCond_Corr, calVal = 1.05, calStd = 1, factorVar = corrFac)
#> Date Time Temp SpCond corrFac SpCond_Corr #> 1 9/18/2015 12:10:49 14.76 0.754 0.0000000 0.7540000 #> 2 9/18/2015 12:15:50 14.64 0.750 0.2003995 0.7600200 #> 3 9/18/2015 12:20:51 14.57 0.750 0.4007989 0.7700399 #> 4 9/18/2015 12:25:51 14.51 0.749 0.6005326 0.7790266 #> 5 9/18/2015 12:30:51 14.50 0.749 0.8002663 0.7890133 #> 6 9/18/2015 12:35:51 14.63 0.749 1.0000000 0.7990000